|
Message-ID: <CAGXu5jLt8Zv-p=9J590WFppc3O6LWrAVdi-xtU7r_8f4j0XeRg@mail.gmail.com> Date: Wed, 20 Jun 2018 15:33:44 -0700 From: Kees Cook <keescook@...omium.org> To: Rick Edgecombe <rick.p.edgecombe@...el.com> Cc: Thomas Gleixner <tglx@...utronix.de>, Ingo Molnar <mingo@...hat.com>, "H. Peter Anvin" <hpa@...or.com>, X86 ML <x86@...nel.org>, LKML <linux-kernel@...r.kernel.org>, Linux-MM <linux-mm@...ck.org>, Kernel Hardening <kernel-hardening@...ts.openwall.com>, kristen Accardi <kristen.c.accardi@...el.com>, Dave Hansen <dave.hansen@...el.com>, "Van De Ven, Arjan" <arjan.van.de.ven@...el.com> Subject: Re: [PATCH 0/3] KASLR feature to randomize each loadable module On Wed, Jun 20, 2018 at 3:09 PM, Rick Edgecombe <rick.p.edgecombe@...el.com> wrote: > This patch changes the module loading KASLR algorithm to randomize the position > of each module text section allocation with at least 18 bits of entropy in the > typical case. It used on x86_64 only for now. Very cool! Thanks for sending the series. :) > Today the RANDOMIZE_BASE feature randomizes the base address where the module > allocations begin with 10 bits of entropy. From here, a highly deterministic > algorithm allocates space for the modules as they are loaded and un-loaded. If > an attacker can predict the order and identities for modules that will be > loaded, then a single text address leak can give the attacker access to the nit: "text address" -> "module text address" > So the defensive strength of this algorithm in typical usage (<800 modules) for > x86_64 should be at least 18 bits, even if an address from the random area > leaks. And most systems have <200 modules, really. I have 113 on a desktop right now, 63 on a server. So this looks like a trivial win. > As for fragmentation, this algorithm reduces the average number of modules that > can be loaded without an allocation failure by about 6% (~17000 to ~16000) > (p<0.05). It can also reduce the largest module executable section that can be > loaded by half to ~500MB in the worst case. Given that we only have 8312 tristate Kconfig items, I think 16000 will remain just fine. And even large modules (i915) are under 2MB... > The new __vmalloc_node_try_addr function uses the existing function > __vmalloc_node_range, in order to introduce this algorithm with the least > invasive change. The side effect is that each time there is a collision when > trying to allocate in the random area a TLB flush will be triggered. There is > a more complex, more efficient implementation that can be used instead if > there is interest in improving performance. The only time when module loading speed is noticeable, I would think, would be boot time. Have you done any boot time delta analysis? I wouldn't expect it to change hardly at all, but it's probably a good idea to actually test it. :) Also: can this be generalized for use on other KASLRed architectures? For example, I know the arm64 module randomization is pretty similar to x86. -Kees -- Kees Cook Pixel Security
Powered by blists - more mailing lists
Confused about mailing lists and their use? Read about mailing lists on Wikipedia and check out these guidelines on proper formatting of your messages.