|
Message-Id: <1489160052-20293-1-git-send-email-dwindsor@gmail.com> Date: Fri, 10 Mar 2017 10:34:12 -0500 From: David Windsor <dwindsor@...il.com> To: peterz@...radead.org, mingo@...nel.org, elena.reshetova@...el.com, dwindsor@...il.com Cc: linux-kernel@...r.kernel.org, kernel-hardening@...ts.openwall.com Subject: [PATCH v3] refcount: add refcount_t API kernel-doc comments v3: rebase against latest Linus tree; re-add include/linux/refcount.h missing from v2 series Signed-off-by: David Windsor <dwindsor@...il.com> --- include/linux/refcount.h | 19 ++++++++ lib/refcount.c | 124 ++++++++++++++++++++++++++++++++++++++++++----- 2 files changed, 130 insertions(+), 13 deletions(-) diff --git a/include/linux/refcount.h b/include/linux/refcount.h index 0023fee..b34aa64 100644 --- a/include/linux/refcount.h +++ b/include/linux/refcount.h @@ -6,17 +6,36 @@ #include <linux/spinlock.h> #include <linux/kernel.h> +/** + * refcount_t - variant of atomic_t specialized for reference counts + * @refs: atomic_t counter field + * + * The counter saturates at UINT_MAX and will not move once + * there. This avoids wrapping the counter and causing 'spurious' + * use-after-free bugs. + */ typedef struct refcount_struct { atomic_t refs; } refcount_t; #define REFCOUNT_INIT(n) { .refs = ATOMIC_INIT(n), } +/** + * refcount_set - set a refcount's value + * @r: the refcount + * @n: value to which the refcount will be set + */ static inline void refcount_set(refcount_t *r, unsigned int n) { atomic_set(&r->refs, n); } +/** + * refcount_read - get a refcount's value + * @r: the refcount + * + * Return: the refcount's value + */ static inline unsigned int refcount_read(const refcount_t *r) { return atomic_read(&r->refs); diff --git a/lib/refcount.c b/lib/refcount.c index aa09ad3..8d5d680 100644 --- a/lib/refcount.c +++ b/lib/refcount.c @@ -37,6 +37,24 @@ #include <linux/refcount.h> #include <linux/bug.h> +/** + * refcount_add_not_zero - add a value to a refcount unless it is 0 + * @i: the value to add to the refcount + * @r: the refcount + * + * Will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + * + * Return: false if the passed refcount is 0, true otherwise + */ bool refcount_add_not_zero(unsigned int i, refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); @@ -64,19 +82,40 @@ bool refcount_add_not_zero(unsigned int i, refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_add_not_zero); +/** + * refcount_add - add a value to a refcount + * @i: the value to add to the refcount + * @r: the refcount + * + * Similar to atomic_add(), but will saturate at UINT_MAX and WARN. + * + * Provides no memory ordering, it is assumed the caller has guaranteed the + * object memory to be stable (RCU, etc.). It does provide a control dependency + * and thereby orders future stores. See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_inc(), or one of its variants, should instead be used to + * increment a reference count. + */ void refcount_add(unsigned int i, refcount_t *r) { WARN_ONCE(!refcount_add_not_zero(i, r), "refcount_t: addition on 0; use-after-free.\n"); } EXPORT_SYMBOL_GPL(refcount_add); -/* - * Similar to atomic_inc_not_zero(), will saturate at UINT_MAX and WARN. +/** + * refcount_inc_not_zero - increment a refcount unless it is 0 + * @r: the refcount to increment + * + * Similar to atomic_inc_not_zero(), but will saturate at UINT_MAX and WARN. * * Provides no memory ordering, it is assumed the caller has guaranteed the * object memory to be stable (RCU, etc.). It does provide a control dependency * and thereby orders future stores. See the comment on top. - */ + * + * Return: true if the increment was successful, false otherwise + */ bool refcount_inc_not_zero(refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); @@ -103,11 +142,17 @@ bool refcount_inc_not_zero(refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_inc_not_zero); -/* - * Similar to atomic_inc(), will saturate at UINT_MAX and WARN. +/** + * refcount_inc - increment a refcount + * @r: the refcount to increment + * + * Similar to atomic_inc(), but will saturate at UINT_MAX and WARN. * * Provides no memory ordering, it is assumed the caller already has a - * reference on the object, will WARN when this is not so. + * reference on the object. + * + * Will WARN if the refcount is 0, as this represents a possible use-after-free + * condition. */ void refcount_inc(refcount_t *r) { @@ -115,6 +160,26 @@ void refcount_inc(refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_inc); +/** + * refcount_sub_and_test - subtract from a refcount and test if it is 0 + * @i: amount to subtract from the refcount + * @r: the refcount + * + * Similar to atomic_dec_and_test(), but it will WARN, return false and + * ultimately leak on underflow and will fail to decrement when saturated + * at UINT_MAX. + * + * Provides release memory ordering, such that prior loads and stores are done + * before, and provides a control dependency such that free() must come after. + * See the comment on top. + * + * Use of this function is not recommended for the normal reference counting + * use case in which references are taken and released one at a time. In these + * cases, refcount_dec(), or one of its variants, should instead be used to + * decrement a reference count. + * + * Return: true if the resulting refcount is 0, false otherwise + */ bool refcount_sub_and_test(unsigned int i, refcount_t *r) { unsigned int old, new, val = atomic_read(&r->refs); @@ -140,13 +205,18 @@ bool refcount_sub_and_test(unsigned int i, refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_sub_and_test); -/* +/** + * refcount_dec_and_test - decrement a refcount and test if it is 0 + * @r: the refcount + * * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to * decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. + * + * Return: true if the resulting refcount is 0, false otherwise */ bool refcount_dec_and_test(refcount_t *r) { @@ -154,21 +224,26 @@ bool refcount_dec_and_test(refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_dec_and_test); -/* +/** + * refcount_dec - decrement a refcount + * @r: the refcount + * * Similar to atomic_dec(), it will WARN on underflow and fail to decrement * when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before. */ - void refcount_dec(refcount_t *r) { WARN_ONCE(refcount_dec_and_test(r), "refcount_t: decrement hit 0; leaking memory.\n"); } EXPORT_SYMBOL_GPL(refcount_dec); -/* +/** + * refcount_dec_if_one - decrement a refcount if it is 1 + * @r: the refcount + * * No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the * success thereof. * @@ -178,6 +253,8 @@ EXPORT_SYMBOL_GPL(refcount_dec); * It can be used like a try-delete operator; this explicit case is provided * and not cmpxchg in generic, because that would allow implementing unsafe * operations. + * + * Return: true if the resulting refcount is 0, false otherwise */ bool refcount_dec_if_one(refcount_t *r) { @@ -185,11 +262,16 @@ bool refcount_dec_if_one(refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_dec_if_one); -/* +/** + * refcount_dec_not_one - decrement a refcount if it is not 1 + * @r: the refcount + * * No atomic_t counterpart, it decrements unless the value is 1, in which case * it will return false. * * Was often done like: atomic_add_unless(&var, -1, 1) + * + * Return: true if the decrement operation was successful, false otherwise */ bool refcount_dec_not_one(refcount_t *r) { @@ -219,13 +301,21 @@ bool refcount_dec_not_one(refcount_t *r) } EXPORT_SYMBOL_GPL(refcount_dec_not_one); -/* +/** + * refcount_dec_and_mutex_lock - return holding mutex if able to decrement + * refcount to 0 + * @r: the refcount + * @lock: the mutex to be locked + * * Similar to atomic_dec_and_mutex_lock(), it will WARN on underflow and fail * to decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. + * + * Return: true and hold mutex if able to decrement refcount to 0, false + * otherwise */ bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) { @@ -242,13 +332,21 @@ bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) } EXPORT_SYMBOL_GPL(refcount_dec_and_mutex_lock); -/* +/** + * refcount_dec_and_lock - return holding spinlock if able to decrement + * refcount to 0 + * @r: the refcount + * @lock: the spinlock to be locked + * * Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to * decrement when saturated at UINT_MAX. * * Provides release memory ordering, such that prior loads and stores are done * before, and provides a control dependency such that free() must come after. * See the comment on top. + * + * Return: true and hold spinlock if able to decrement refcount to 0, false + * otherwise */ bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) { -- 2.7.4
Powered by blists - more mailing lists
Confused about mailing lists and their use? Read about mailing lists on Wikipedia and check out these guidelines on proper formatting of your messages.