Follow @Openwall on Twitter for new release announcements and other news
[<prev] [next>] [<thread-prev] [thread-next>] [day] [month] [year] [list]
Date: Tue, 26 Sep 2017 09:25:01 -0400
From: Matt Weir <>
To: "" <>
Subject: Re: 'PassGAN: A Deep Learning Approach'

Oh, and my apologies for typoing your name Jeroen!!! Just realized
that after hitting send.


On Tue, Sep 26, 2017 at 9:23 AM, Matt Weir <> wrote:
> Thanks for sending that along Jeoren!
> I've gone through that paper a number of times now. As background for
> the people on this mailinglist who don't want to read it, the paper
> describes using Generated Adversarial Networks (GANs) to train a
> neural network to create password guesses. It a ways, it is very
> similar to the earlier work done by CMU on using neural networks to
> crack passwords. CMU's code is here:
> And if you actually want to get that code to run I highly recommend
> checking out Maximilian's tutorial here:
> Both the PassGAN and the CMU teams generate guesses much like JtR
> --Markov and --Incremental modes by using the conditional
> probabilities of letters appearing together. For example, if the first
> letter is a 'q' then then next letter will likely be a 'u'. A more
> sophisticated example would be, if the first three letters are '123',
> then the next letter will likely be a '4'.
> Where PassGAN is different from the CMU approach is mostly from the
> training stage as far as I can tell. While I can't directly compare
> the two attacks since I'm not aware of the PassGAN code being publicly
> released, at least based on reading the papers the CMU approach is
> much, much more effective.
> Actually the PassGAN paper is a bit of a mess when it comes to looking
> at other password cracking approaches. For example it uses the
> SpiderLab ruleset for JtR vs the default one, or --single. The actual
> results of PassGAN were very poor, and while the team said that
> combining PassGAN with Hashcat's best64 ruleset + wordlist cracked
> more passwords than just running best64, they didn't bother to
> contrast that with other attack modes + best64.  Long story short, the
> research is interesting but if you are looking to use neural networks
> for generating password guesses the current go-to is still the CMU
> codebase.
> Matt
> On Tue, Sep 26, 2017 at 6:33 AM, Jeroen <> wrote:
>> FYI: [1709.00440] PassGAN: A Deep Learning Approach for Password Guessing
>> @<>.
>> Cheers,
>> Jeroen

Powered by blists - more mailing lists

Confused about mailing lists and their use? Read about mailing lists on Wikipedia and check out these guidelines on proper formatting of your messages.